Source code for citylearn.reward_function

from typing import Any, List, Mapping, Tuple, Union
import numpy as np
from citylearn.building import Building
from citylearn.data import ZERO_DIVISION_PLACEHOLDER

[docs] class RewardFunction: r"""Base and default reward function class. The default reward is the electricity consumption from the grid at the current time step returned as a negative value. Parameters ---------- env_metadata: Mapping[str, Any]: General static information about the environment. **kwargs : dict Other keyword arguments for custom reward calculation. """ def __init__(self, env_metadata: Mapping[str, Any], exponent: float = None, **kwargs): self.env_metadata = env_metadata self.exponent = exponent @property def env_metadata(self) -> Mapping[str, Any]: """General static information about the environment.""" return self.__env_metadata @property def central_agent(self) -> bool: """Expect 1 central agent to control all buildings.""" return self.env_metadata['central_agent'] @property def exponent(self) -> float: return self.__exponent @env_metadata.setter def env_metadata(self, env_metadata: Mapping[str, Any]): self.__env_metadata = env_metadata @exponent.setter def exponent(self, exponent: float): self.__exponent = 1.0 if exponent is None else exponent
[docs] def reset(self): """Use to reset variables at the start of an episode.""" pass
[docs] def calculate(self, observations: List[Mapping[str, Union[int, float]]]) -> List[float]: r"""Calculates reward. Parameters ---------- observations: List[Mapping[str, Union[int, float]]] List of all building observations at current :py:attr:`citylearn.citylearn.CityLearnEnv. time_step` that are got from calling :py:meth:`citylearn.building.Building.observations`. Returns ------- reward: List[float] Reward for transition to current timestep. """ net_electricity_consumption = [o['net_electricity_consumption'] for o in observations] reward_list = [-(max(o, 0)**self.exponent) for o in net_electricity_consumption] if self.central_agent: reward = [sum(reward_list)] else: reward = reward_list return reward
[docs] class MARL(RewardFunction): """MARL reward function class. Parameters ---------- env_metadata: Mapping[str, Any]: General static information about the environment. """ def __init__(self, env_metadata: Mapping[str, Any]): super().__init__(env_metadata)
[docs] def calculate(self, observations: List[Mapping[str, Union[int, float]]]) -> List[float]: net_electricity_consumption = [o['net_electricity_consumption'] for o in observations] district_electricity_consumption = sum(net_electricity_consumption) building_electricity_consumption = np.array(net_electricity_consumption, dtype=float)*-1 reward_list = np.sign(building_electricity_consumption)*0.01*building_electricity_consumption**2*np.nanmax([0, district_electricity_consumption]) if self.central_agent: reward = [reward_list.sum()] else: reward = reward_list.tolist() return reward
[docs] class IndependentSACReward(RewardFunction): """Recommended for use with the `SAC` controllers. Returned reward assumes that the building-agents act independently of each other, without sharing information through the reward. Parameters ---------- env_metadata: Mapping[str, Any]: General static information about the environment. """ def __init__(self, env_metadata: Mapping[str, Any]): super().__init__(env_metadata)
[docs] def calculate(self, observations: List[Mapping[str, Union[int, float]]]) -> List[float]: net_electricity_consumption = [o['net_electricity_consumption'] for o in observations] reward_list = [min(v*-1**3, 0) for v in net_electricity_consumption] if self.central_agent: reward = [sum(reward_list)] else: reward = reward_list return reward
[docs] class SolarPenaltyReward(RewardFunction): """The reward is designed to minimize electricity consumption and maximize solar generation to charge energy storage systems. The reward is calculated for each building, i and summed to provide the agent with a reward that is representative of all the building or buildings (in centralized case)it controls. It encourages net-zero energy use by penalizing grid load satisfaction when there is energy in the energy storage systems as well as penalizing net export when the energy storage systems are not fully charged through the penalty term. There is neither penalty nor reward when the energy storage systems are fully charged during net export to the grid. Whereas, when the energy storage systems are charged to capacity and there is net import from the grid the penalty is maximized. Parameters ---------- env_metadata: Mapping[str, Any]: General static information about the environment. """ def __init__(self, env_metadata: Mapping[str, Any]): super().__init__(env_metadata)
[docs] def calculate(self, observations: List[Mapping[str, Union[int, float]]]) -> List[float]: reward_list = [] for o, m in zip(observations, self.env_metadata['buildings']): e = o['net_electricity_consumption'] cc = m['cooling_storage']['capacity'] hc = m['heating_storage']['capacity'] dc = m['dhw_storage']['capacity'] ec = m['electrical_storage']['capacity'] cs = o.get('cooling_storage_soc', 0.0) hs = o.get('heating_storage_soc', 0.0) ds = o.get('dhw_storage_soc', 0.0) es = o.get('electrical_storage_soc', 0.0) reward = 0.0 reward += -(1.0 + np.sign(e)*cs)*abs(e) if cc > ZERO_DIVISION_PLACEHOLDER else 0.0 reward += -(1.0 + np.sign(e)*hs)*abs(e) if hc > ZERO_DIVISION_PLACEHOLDER else 0.0 reward += -(1.0 + np.sign(e)*ds)*abs(e) if dc > ZERO_DIVISION_PLACEHOLDER else 0.0 reward += -(1.0 + np.sign(e)*es)*abs(e) if ec > ZERO_DIVISION_PLACEHOLDER else 0.0 reward_list.append(reward) if self.central_agent: reward = [sum(reward_list)] else: reward = reward_list return reward
[docs] class ComfortReward(RewardFunction): """Reward for occupant thermal comfort satisfaction. The reward is calculated as the negative difference between the setpoint and indoor dry-bulb temperature raised to some exponent if outside the comfort band. If within the comfort band, the reward is the negative difference when in cooling mode and temperature is below the setpoint or when in heating mode and temperature is above the setpoint. The reward is 0 if within the comfort band and above the setpoint in cooling mode or below the setpoint and in heating mode. Parameters ---------- env_metadata: Mapping[str, Any]: General static information about the environment. band: float, default: 2.0 Setpoint comfort band (+/-). If not provided, the comfort band time series defined in the building file, or the default time series value of 2.0 is used. lower_exponent: float, default = 2.0 Penalty exponent for when in cooling mode but temperature is above setpoint upper boundary or heating mode but temperature is below setpoint lower boundary. higher_exponent: float, default = 2.0 Penalty exponent for when in cooling mode but temperature is below setpoint lower boundary or heating mode but temperature is above setpoint upper boundary. """ def __init__(self, env_metadata: Mapping[str, Any], band: float = None, lower_exponent: float = None, higher_exponent: float = None): super().__init__(env_metadata) self.band = band self.lower_exponent = lower_exponent self.higher_exponent = higher_exponent @property def band(self) -> float: return self.__band @property def lower_exponent(self) -> float: return self.__lower_exponent @property def higher_exponent(self) -> float: return self.__higher_exponent @band.setter def band(self, band: float): self.__band = band @lower_exponent.setter def lower_exponent(self, lower_exponent: float): self.__lower_exponent = 2.0 if lower_exponent is None else lower_exponent @higher_exponent.setter def higher_exponent(self, higher_exponent: float): self.__higher_exponent = 2.0 if higher_exponent is None else higher_exponent
[docs] def calculate(self, observations: List[Mapping[str, Union[int, float]]]) -> List[float]: reward_list = [] for o in observations: heating_demand = o.get('heating_demand', 0.0) cooling_demand = o.get('cooling_demand', 0.0) heating = heating_demand > cooling_demand hvac_mode = o['hvac_mode'] indoor_dry_bulb_temperature = o['indoor_dry_bulb_temperature'] if hvac_mode in [1, 2]: set_point = o['indoor_dry_bulb_temperature_cooling_set_point'] if hvac_mode == 1 else o['indoor_dry_bulb_temperature_heating_set_point'] band = self.band if self.band is not None else o['comfort_band'] lower_bound_comfortable_indoor_dry_bulb_temperature = set_point - band upper_bound_comfortable_indoor_dry_bulb_temperature = set_point + band delta = abs(indoor_dry_bulb_temperature - set_point) if indoor_dry_bulb_temperature < lower_bound_comfortable_indoor_dry_bulb_temperature: exponent = self.lower_exponent if hvac_mode == 2 else self.higher_exponent reward = -(delta**exponent) elif lower_bound_comfortable_indoor_dry_bulb_temperature <= indoor_dry_bulb_temperature < set_point: reward = 0.0 if heating else -delta elif set_point <= indoor_dry_bulb_temperature <= upper_bound_comfortable_indoor_dry_bulb_temperature: reward = -delta if heating else 0.0 else: exponent = self.higher_exponent if heating else self.lower_exponent reward = -(delta**exponent) else: cooling_set_point = o['indoor_dry_bulb_temperature_cooling_set_point'] heating_set_point = o['indoor_dry_bulb_temperature_heating_set_point'] band = self.band if self.band is not None else o['comfort_band'] lower_bound_comfortable_indoor_dry_bulb_temperature = heating_set_point - band upper_bound_comfortable_indoor_dry_bulb_temperature = cooling_set_point + band cooling_delta = indoor_dry_bulb_temperature - cooling_set_point heating_delta = indoor_dry_bulb_temperature - heating_set_point if indoor_dry_bulb_temperature < lower_bound_comfortable_indoor_dry_bulb_temperature: exponent = self.higher_exponent if not heating else self.lower_exponent reward = -(abs(heating_delta)**exponent) elif lower_bound_comfortable_indoor_dry_bulb_temperature <= indoor_dry_bulb_temperature < heating_set_point: reward = -(abs(heating_delta)) elif heating_set_point <= indoor_dry_bulb_temperature <= cooling_set_point: reward = 0.0 elif cooling_set_point < indoor_dry_bulb_temperature < upper_bound_comfortable_indoor_dry_bulb_temperature: reward = -(abs(cooling_delta)) else: exponent = self.higher_exponent if heating else self.lower_exponent reward = -(abs(cooling_delta)**exponent) reward_list.append(reward) if self.central_agent: reward = [sum(reward_list)] else: reward = reward_list return reward
[docs] class SolarPenaltyAndComfortReward(RewardFunction): """Addition of :py:class:`citylearn.reward_function.SolarPenaltyReward` and :py:class:`citylearn.reward_function.ComfortReward`. Parameters ---------- env_metadata: Mapping[str, Any]: General static information about the environment. band: float, default = 2.0 Setpoint comfort band (+/-). If not provided, the comfort band time series defined in the building file, or the default time series value of 2.0 is used. lower_exponent: float, default = 2.0 Penalty exponent for when in cooling mode but temperature is above setpoint upper boundary or heating mode but temperature is below setpoint lower boundary. higher_exponent: float, default = 3.0 Penalty exponent for when in cooling mode but temperature is below setpoint lower boundary or heating mode but temperature is above setpoint upper boundary. coefficients: Tuple, default = (1.0, 1.0) Coefficents for `citylearn.reward_function.SolarPenaltyReward` and :py:class:`citylearn.reward_function.ComfortReward` values respectively. """ def __init__(self, env_metadata: Mapping[str, Any], band: float = None, lower_exponent: float = None, higher_exponent: float = None, coefficients: Tuple = None): self.__functions: List[RewardFunction] = [ SolarPenaltyReward(env_metadata), ComfortReward(env_metadata, band=band, lower_exponent=lower_exponent, higher_exponent=higher_exponent) ] super().__init__(env_metadata) self.coefficients = coefficients @property def coefficients(self) -> Tuple: return self.__coefficients @RewardFunction.env_metadata.setter def env_metadata(self, env_metadata: Mapping[str, Any]) -> Mapping[str, Any]: RewardFunction.env_metadata.fset(self, env_metadata) for f in self.__functions: f.env_metadata = self.env_metadata @coefficients.setter def coefficients(self, coefficients: Tuple): coefficients = [1.0]*len(self.__functions) if coefficients is None else coefficients assert len(coefficients) == len(self.__functions), f'{type(self).__name__} needs {len(self.__functions)} coefficients.' self.__coefficients = coefficients
[docs] def calculate(self, observations: List[Mapping[str, Union[int, float]]]) -> List[float]: reward = np.array([f.calculate(observations) for f in self.__functions], dtype='float32') reward = reward*np.reshape(self.coefficients, (len(self.coefficients), 1)) reward = reward.sum(axis=0).tolist() return reward
[docs] class V2GPenaltyReward(MARL): """Rewards with considerations for electric vehicle charging behaviours in a V2G setting. Note that this function rewards/penalizes only the electric vehicle part. For a comprehensive reward strategy please use one of the super classes or rewrite your own Parameters ---------- env_metadata: Mapping[str, Any]: General static information about the environment. """ def __init__(self, env_metadata: Mapping[str, Any], peak_percentage_threshold : float = None, ramping_percentage_threshold : float = None, peak_penalty_weight : int = None, ramping_penalty_weight : int = None, energy_transfer_bonus : int = None, window_size : int = None, penalty_no_car_charging : int = None, penalty_battery_limits : int = None, penalty_soc_under_5_10 : int = None, reward_close_soc : int = None, reward_self_ev_consumption : int = None, community_weight : float = None, reward_extra_self_production : int = None): super().__init__(env_metadata) # Setting the parameters self.peak_percentage_threshold = peak_percentage_threshold self.ramping_percentage_threshold = ramping_percentage_threshold self.peak_penalty_weight = peak_penalty_weight self.ramping_penalty_weight = ramping_penalty_weight self.energy_transfer_bonus = energy_transfer_bonus self.window_size = window_size self.penalty_no_car_charging = penalty_no_car_charging self.penalty_battery_limits = penalty_battery_limits self.penalty_soc_under_5_10 = penalty_soc_under_5_10 self.reward_close_soc = reward_close_soc self.community_weight = community_weight self.reward_extra_self_production = reward_extra_self_production self.reward_self_ev_consumption = reward_self_ev_consumption @property def peak_percentage_threshold(self) -> float: """Return the peak_percentage_threshold""" return self.__peak_percentage_threshold @peak_percentage_threshold.setter def peak_percentage_threshold(self, peak_percentage_threshold: float): if peak_percentage_threshold is None: self.__peak_percentage_threshold = 0.10 else: self.__peak_percentage_threshold = peak_percentage_threshold @property def ramping_percentage_threshold(self) -> float: """Return the ramping_percentage_threshold""" return self.__ramping_percentage_threshold @ramping_percentage_threshold.setter def ramping_percentage_threshold(self, ramping_percentage_threshold: float): if ramping_percentage_threshold is None: self.__ramping_percentage_threshold = 0.10 else: self.__ramping_percentage_threshold = ramping_percentage_threshold @property def peak_penalty_weight(self) -> int: """Return the peak_penalty_weight""" return self.__peak_penalty_weight @peak_penalty_weight.setter def peak_penalty_weight(self, peak_penalty_weight: int): if peak_penalty_weight is None: self.__peak_penalty_weight = 20 else: self.__peak_penalty_weight = peak_penalty_weight @property def ramping_penalty_weight(self) -> int: """Return the ramping_penalty_weight""" return self.__ramping_penalty_weight @ramping_penalty_weight.setter def ramping_penalty_weight(self, ramping_penalty_weight: int): if ramping_penalty_weight is None: self.__ramping_penalty_weight = 15 else: self.__ramping_penalty_weight = ramping_penalty_weight @property def energy_transfer_bonus(self) -> int: """Return the energy_transfer_bonus""" return self.__energy_transfer_bonus @energy_transfer_bonus.setter def energy_transfer_bonus(self, energy_transfer_bonus: int): if energy_transfer_bonus is None: self.__energy_transfer_bonus = 10 else: self.__energy_transfer_bonus = energy_transfer_bonus @property def window_size(self) -> int: """Return the window_size""" return self.__window_size @window_size.setter def window_size(self, window_size: int): if window_size is None: self.__window_size = 6 else: self.__window_size = window_size @property def penalty_no_car_charging(self) -> int: """Return the penalty_no_car_charging""" return self.__penalty_no_car_charging @penalty_no_car_charging.setter def penalty_no_car_charging(self, penalty_no_car_charging: int): if penalty_no_car_charging is None: self.__penalty_no_car_charging = -5 else: self.__penalty_no_car_charging = penalty_no_car_charging @property def penalty_battery_limits(self) -> int: """Return the penalty_battery_limits""" return self.__penalty_battery_limits @penalty_battery_limits.setter def penalty_battery_limits(self, penalty_battery_limits: int): if penalty_battery_limits is None: self.__penalty_battery_limits = -2 else: self.__penalty_battery_limits = penalty_battery_limits @property def penalty_soc_under_5_10(self) -> int: """Return the penalty_soc_under_5_10""" return self.__penalty_soc_under_5_10 @penalty_soc_under_5_10.setter def penalty_soc_under_5_10(self, penalty_soc_under_5_10: int): if penalty_soc_under_5_10 is None: self.__penalty_soc_under_5_10 = -5 else: self.__penalty_soc_under_5_10 = penalty_soc_under_5_10 @property def reward_close_soc(self) -> int: """Return the reward_close_soc""" return self.__penalty_soc_under_5_10 @reward_close_soc.setter def reward_close_soc(self, reward_close_soc: int): if reward_close_soc is None: self._reward_close_soc = 10 else: self.__reward_close_soc = reward_close_soc @property def reward_self_ev_consumption(self) -> int: """Return the reward_self_ev_consumption""" return self.__reward_self_ev_consumption @reward_self_ev_consumption.setter def reward_self_ev_consumption(self, reward_self_ev_consumption: int): if reward_self_ev_consumption is None: self._reward_self_ev_consumption = 5 else: self.__reward_self_ev_consumption = reward_self_ev_consumption @property def community_weight(self) -> float: """Return the community_weight""" return self.__community_weight @community_weight.setter def community_weight(self, community_weight: float): if community_weight is None: self._community_weight = 0.2 else: self.__community_weight = community_weight @property def reward_extra_self_production(self) -> int: """Return the reward_extra_self_production""" return self.__reward_extra_self_production @reward_extra_self_production.setter def reward_extra_self_production(self, reward_extra_self_production: int): if reward_extra_self_production is None: self._reward_extra_self_production = 5 else: self.__reward_extra_self_production = reward_extra_self_production
[docs] def calculate(self, observations: List[Mapping[str, Union[int, float]]]) -> List[float]: ##net_electricity_consumption = [o['net_electricity_consumption'] for o in observations] current_reward = super.calculate(observations) reward_list = [] for b in self.env.buildings: # Building reward calculation reward = self.calculate_ev_penalty(b, current_reward) reward_list.append(reward) # Central agent reward aggregation if self.central_agent: reward = [reward_list.sum()] else: reward = reward_list.tolist() return reward
[docs] def calculate_ev_penalty(self, b : Building, current_reward : RewardFunction) -> float: """Calculate penalties based on EV specific logic.""" penalty = 0 penalty_multiplier = abs(current_reward) # Multiplier for the penalty if b.chargers: for c in b.chargers: last_connected_car = c.past_connected_evs[-2] last_charged_value = c.past_charging_action_values[-2] # 1. Penalty for charging when no car is present if last_connected_car is None and last_charged_value > 0.1 or last_charged_value < 0.1: penalty += self.PENALTY_NO_CAR_CHARGING * penalty_multiplier # 3. Penalty for exceeding the battery's limits if last_connected_car is not None: if last_connected_car.battery.soc[-2] + last_charged_value > last_connected_car.battery.capacity: penalty += self.PENALTY_BATTERY_LIMITS * penalty_multiplier if last_connected_car.battery.soc[-2] + last_charged_value < last_connected_car.min_battery_soc: penalty += self.PENALTY_BATTERY_LIMITS * penalty_multiplier # 4. Penalties (or Reward) for SoC differences if last_connected_car is not None: required_soc = last_connected_car.electric_vehicle_simulation.required_soc_departure[-1] actual_soc = last_connected_car.battery.soc[-1] hours_until_departure = last_connected_car.electric_vehicle_simulation.estimated_departure_time[-1] max_possible_charge = c.max_charging_power * hours_until_departure max_possible_discharge = c.max_discharging_power * hours_until_departure soc_diff = ((actual_soc * 100) / last_connected_car.battery.capacity) - required_soc # If the car needs more charge than it currently has and it's impossible to achieve the required SoC if soc_diff > 0 and soc_diff > max_possible_charge: penalty += self.PENALTY_SOC_UNDER_5_10 ** 2 * penalty_multiplier # Adjusted penalties/rewards based on SoC difference at departure if hours_until_departure == 0: if -25 < soc_diff <= -10: penalty += 2 * self.PENALTY_SOC_UNDER_5_10 * penalty_multiplier elif soc_diff <= -25: penalty += self.PENALTY_SOC_UNDER_5_10 ** 3 * penalty_multiplier elif -10 < soc_diff <= 10: penalty += self.REWARD_CLOSE_SOC * penalty_multiplier # Reward for leaving with SOC close to the requested value if (soc_diff > 0 and soc_diff <= max_possible_charge) or ( soc_diff < 0 and abs(soc_diff) <= max_possible_discharge): reward_multiplier = 1 / ( hours_until_departure + 0.1) # Adding 0.1 to prevent division by zero penalty += self.REWARD_CLOSE_SOC * penalty_multiplier * reward_multiplier net_energy_before = b.net_electricity_consumption[b.time_step-1] # 5. Reward for charging the car during times of extra self-production if last_connected_car is not None and last_charged_value > 0 and net_energy_before < 0: penalty += self.REWARD_EXTRA_SELF_PRODUCTION * penalty_multiplier elif last_connected_car is not None and last_charged_value < 0 and net_energy_before < 0: penalty += self.REWARD_EXTRA_SELF_PRODUCTION*-0.5 * penalty_multiplier # 6. Reward for discharging the car to support building consumption and avoid importing energy if last_connected_car is not None and last_charged_value < 0 and net_energy_before > 0: penalty += self.REWARD_SELF_EV_CONSUMPTION * penalty_multiplier elif last_connected_car is not None and last_charged_value > 0 and net_energy_before > 0: penalty += self.REWARD_SELF_EV_CONSUMPTION * -0.5 * penalty_multiplier return penalty