Source code for citylearn.energy_model

import logging
import math
from pathlib import Path
from typing import Any, Iterable, List, Mapping, Tuple, Union
import numpy as np
import pandas as pd
from PySAM import Pvwattsv8
from citylearn.base import Environment
from citylearn.data import DataSet, ZERO_DIVISION_PLACEHOLDER
np.seterr(divide='ignore', invalid='ignore')

LOGGER = logging.getLogger()

[docs] class Device(Environment): r"""Base device class. Parameters ---------- efficiency : Union[float, Tuple[float, float]], default: (0.8, 1.0) Technical efficiency. Must be set to > 0. Other Parameters ---------------- **kwargs : dict Other keyword arguments used to initialize super class. """ def __init__(self, efficiency: Union[float, Tuple[float, float]] = None, **kwargs): super().__init__(**kwargs) self.efficiency = efficiency self._autosize_config = None @property def efficiency(self) -> float: """Technical efficiency.""" return self.__efficiency @property def autosize_config(self) -> Mapping[str, Union[str, float]]: """Reference for configuration parameters used during autosizing.""" return self._autosize_config @efficiency.setter def efficiency(self, efficiency: Union[float, Tuple[float, float]]): efficiency = self._get_property_value(efficiency, (0.8, 1.0)) assert efficiency > 0, 'efficiency must be > 0.' self.__efficiency = efficiency
[docs] def get_metadata(self) -> Mapping[str, Any]: return { **super().get_metadata(), 'efficiency': self.efficiency, 'autosize_config': self.autosize_config, }
def _get_property_value(self, value: Union[float, None, Tuple[float, float]], default_value: Union[float, Tuple[float, float]]): """Returns `value` if it is a float or a number in the uniform distribution whose limits are defined by `value`. If `value` is `None`, the defalut value is used. Ideal and primarily used for stochastically setting device parameters.""" if value is None or math.isnan(value): if isinstance(default_value, tuple): value = self.numpy_random_state.uniform(*default_value) else: value = default_value else: if isinstance(value, tuple): value = self.numpy_random_state.uniform(*value) else: pass return value
[docs] class ElectricDevice(Device): r"""Base electric device class. Parameters ---------- nominal_power : float, default: 0.0 Electric device nominal power >= 0. Other Parameters ---------------- **kwargs : Any Other keyword arguments used to initialize super class. """ def __init__(self, nominal_power: float = None, **kwargs: Any): super().__init__(**kwargs) self.nominal_power = nominal_power @property def nominal_power(self) -> float: r"""Nominal power.""" return self.__nominal_power @nominal_power.setter def nominal_power(self, nominal_power: float): nominal_power = 0.0 if nominal_power is None else nominal_power assert nominal_power >= 0, 'nominal_power must be >= 0.' self.__nominal_power = nominal_power @property def electricity_consumption(self) -> np.ndarray: r"""Electricity consumption time series [kWh].""" return self.__electricity_consumption @property def available_nominal_power(self) -> float: r"""Difference between `nominal_power` and `electricity_consumption` at current `time_step`.""" return None if self.nominal_power is None else self.nominal_power - self.electricity_consumption[self.time_step]
[docs] def get_metadata(self) -> Mapping[str, Any]: return { **super().get_metadata(), 'nominal_power': self.nominal_power, }
[docs] def update_electricity_consumption(self, electricity_consumption: float, enforce_polarity: bool = None): r"""Updates `electricity_consumption` at current `time_step`. Parameters ---------- electricity_consumption: float Value to add to current `time_step` `electricity_consumption`. Must be >= 0. enforce_polarity: bool, default: True Whether to allow only positive `electricity_consumption` values. Some electric devices like :py:class:`citylearn.energy_model.Battery` may be bi-directional and allow electricity discharge thus, cause negative electricity consumption. """ enforce_polarity = True if enforce_polarity is None else enforce_polarity assert not enforce_polarity or electricity_consumption >= 0.0,\ f'electricity_consumption must be >= 0 but value: {electricity_consumption} was provided.' self.__electricity_consumption[self.time_step] += electricity_consumption
[docs] def reset(self): r"""Reset `ElectricDevice` to initial state and set `electricity_consumption` at `time_step` 0 to = 0.0.""" super().reset() self.__electricity_consumption = np.zeros(self.episode_tracker.episode_time_steps, dtype='float32')
[docs] class HeatPump(ElectricDevice): r"""Base heat pump class. Parameters ---------- nominal_power: float, default: 0.0 Maximum amount of electric power that the heat pump can consume from the power grid (given by the nominal power of the compressor). efficiency : Union[float, Tuple[float, float]], default: (0.2, 0.3) Technical efficiency. target_heating_temperature : Union[float, Tuple[float, float]], default: (45.0, 50.0) Target heating supply dry bulb temperature in [C]. target_cooling_temperature : Union[float, Tuple[float, float]], default: (7.0, 10.0) Target cooling supply dry bulb temperature in [C]. Other Parameters ---------------- **kwargs : Any Other keyword arguments used to initialize super class. """ def __init__(self, nominal_power: float = None, efficiency: float = None, target_heating_temperature: Union[float, Tuple[float, float]] = None, target_cooling_temperature: Union[float, Tuple[float, float]] = None, **kwargs: Any): super().__init__(nominal_power = nominal_power, efficiency = efficiency, **kwargs) self.target_heating_temperature = target_heating_temperature self.target_cooling_temperature = target_cooling_temperature @property def target_heating_temperature(self) -> float: r"""Target heating supply dry bulb temperature in [C].""" return self.__target_heating_temperature @property def target_cooling_temperature(self) -> float: r"""Target cooling supply dry bulb temperature in [C].""" return self.__target_cooling_temperature @target_heating_temperature.setter def target_heating_temperature(self, target_heating_temperature: Union[float, Tuple[float, float]]): target_heating_temperature = self._get_property_value(target_heating_temperature, (45.0, 50.0)) self.__target_heating_temperature = target_heating_temperature @target_cooling_temperature.setter def target_cooling_temperature(self, target_cooling_temperature: Union[float, Tuple[float, float]]): target_cooling_temperature = self._get_property_value(target_cooling_temperature, (7.0, 10.0)) self.__target_cooling_temperature = target_cooling_temperature @ElectricDevice.efficiency.setter def efficiency(self, efficiency: Union[float, Tuple[float, float]]): efficiency = self._get_property_value(efficiency, (0.2, 0.3)) ElectricDevice.efficiency.fset(self, efficiency)
[docs] def get_metadata(self) -> Mapping[str, Any]: return { **super().get_metadata(), 'target_heating_temperature': self.target_heating_temperature, 'target_cooling_temperature': self.target_cooling_temperature, }
[docs] def get_cop(self, outdoor_dry_bulb_temperature: Union[float, Iterable[float]], heating: bool) -> Union[float, Iterable[float]]: r"""Return coefficient of performance. Calculate the Carnot cycle COP for heating or cooling mode. COP is set to 20 if < 0 or > 20. Parameters ---------- outdoor_dry_bulb_temperature : Union[float, Iterable[float]] Outdoor dry bulb temperature in [C]. heating : bool If `True` return the heating COP else return cooling COP. Returns ------- cop : Union[float, Iterable[float]] COP as single value or time series depending on input parameter types. Notes ----- heating_cop = (`t_target_heating` + 273.15)*`efficiency`/(`t_target_heating` - outdoor_dry_bulb_temperature) cooling_cop = (`t_target_cooling` + 273.15)*`efficiency`/(outdoor_dry_bulb_temperature - `t_target_cooling`) """ c_to_k = lambda x: x + 273.15 outdoor_dry_bulb_temperature = np.array(outdoor_dry_bulb_temperature) if heating: cop = self.efficiency*c_to_k(self.target_heating_temperature)/(self.target_heating_temperature - outdoor_dry_bulb_temperature) else: cop = self.efficiency*c_to_k(self.target_cooling_temperature)/(outdoor_dry_bulb_temperature - self.target_cooling_temperature) cop = np.array(cop) cop[cop < 0] = 20 cop[cop > 20] = 20 return cop
[docs] def get_max_output_power(self, outdoor_dry_bulb_temperature: Union[float, Iterable[float]], heating: bool, max_electric_power: Union[float, Iterable[float]] = None) -> Union[float, Iterable[float]]: r"""Return maximum output power. Calculate maximum output power from heat pump given `cop`, `available_nominal_power` and `max_electric_power` limitations. Parameters ---------- outdoor_dry_bulb_temperature : Union[float, Iterable[float]] Outdoor dry bulb temperature in [C]. heating : bool If `True` use heating COP else use cooling COP. max_electric_power : Union[float, Iterable[float]], optional Maximum amount of electric power that the heat pump can consume from the power grid. Returns ------- max_output_power : Union[float, Iterable[float]] Maximum output power as single value or time series depending on input parameter types. Notes ----- max_output_power = min(max_electric_power, `available_nominal_power`)*cop """ cop = self.get_cop(outdoor_dry_bulb_temperature, heating) if max_electric_power is None: return self.available_nominal_power*cop else: return np.min([max_electric_power, self.available_nominal_power], axis=0)*cop
[docs] def get_input_power(self, output_power: Union[float, Iterable[float]], outdoor_dry_bulb_temperature: Union[float, Iterable[float]], heating: bool) -> Union[float, Iterable[float]]: r"""Return input power. Calculate power needed to meet `output_power` given `cop` limitations. Parameters ---------- output_power : Union[float, Iterable[float]] Output power from heat pump outdoor_dry_bulb_temperature : Union[float, Iterable[float]] Outdoor dry bulb temperature in [C]. heating : bool If `True` use heating COP else use cooling COP. Returns ------- input_power : Union[float, Iterable[float]] Input power as single value or time series depending on input parameter types. Notes ----- input_power = output_power/cop """ return output_power/self.get_cop(outdoor_dry_bulb_temperature, heating)
[docs] def autosize(self, outdoor_dry_bulb_temperature: Iterable[float], cooling_demand: Iterable[float] = None, heating_demand: Iterable[float] = None, safety_factor: Union[float, Tuple[float, float]] = None) -> float: r"""Autosize `nominal_power`. Set `nominal_power` to the minimum power needed to always meet `cooling_demand` + `heating_demand`. Parameters ---------- outdoor_dry_bulb_temperature : Union[float, Iterable[float]] Outdoor dry bulb temperature in [C]. cooling_demand : Union[float, Iterable[float]], optional Cooling demand in [kWh]. heating_demand : Union[float, Iterable[float]], optional Heating demand in [kWh]. safety_factor : Union[float, Tuple[float, float]], default: 1.0 `nominal_power` is oversized by factor of `safety_factor`. Returns ------- nominal_power : float Autosized nominal power Notes ----- `nominal_power` = max((cooling_demand/cooling_cop) + (heating_demand/heating_cop))*safety_factor """ safety_factor = self._get_property_value(safety_factor, 1.0) if cooling_demand is not None: cooling_nominal_power = np.array(cooling_demand)/self.get_cop(outdoor_dry_bulb_temperature, False) else: cooling_nominal_power = 0 if heating_demand is not None: heating_nominal_power = np.array(heating_demand)/self.get_cop(outdoor_dry_bulb_temperature, True) else: heating_nominal_power = 0 nominal_power = np.nanmax(cooling_nominal_power + heating_nominal_power)*safety_factor return nominal_power
[docs] class ElectricHeater(ElectricDevice): r"""Base electric heater class. Parameters ---------- nominal_power : float, default: (0.9, 0.99) Maximum amount of electric power that the electric heater can consume from the power grid. efficiency : Union[float, Tuple[float, float]], default: 0.9 Technical efficiency. Other Parameters ---------------- **kwargs : Any Other keyword arguments used to initialize super class. """ def __init__(self, nominal_power: float = None, efficiency: Union[float, Tuple[float, float]] = None, **kwargs: Any): super().__init__(nominal_power = nominal_power, efficiency = efficiency, **kwargs) @ElectricDevice.efficiency.setter def efficiency(self, efficiency: float): efficiency = self._get_property_value(efficiency, (0.9, 0.99)) ElectricDevice.efficiency.fset(self, efficiency)
[docs] def get_max_output_power(self, max_electric_power: Union[float, Iterable[float]] = None) -> Union[float, Iterable[float]]: r"""Return maximum output power. Calculate maximum output power from heat pump given `max_electric_power` limitations. Parameters ---------- max_electric_power : Union[float, Iterable[float]], optional Maximum amount of electric power that the heat pump can consume from the power grid. Returns ------- max_output_power : Union[float, Iterable[float]] Maximum output power as single value or time series depending on input parameter types. Notes ----- max_output_power = min(max_electric_power, `available_nominal_power`)*`efficiency` """ if max_electric_power is None: return self.available_nominal_power*self.efficiency else: return np.min([max_electric_power, self.available_nominal_power], axis=0)*self.efficiency
[docs] def get_input_power(self, output_power: Union[float, Iterable[float]]) -> Union[float, Iterable[float]]: r"""Return input power. Calculate power demand to meet `output_power`. Parameters ---------- output_power : Union[float, Iterable[float]] Output power from heat pump Returns ------- input_power : Union[float, Iterable[float]] Input power as single value or time series depending on input parameter types. Notes ----- input_power = output_power/`efficiency` """ return np.array(output_power)/self.efficiency
[docs] def autosize(self, demand: Iterable[float], safety_factor: Union[float, Tuple[float, float]] = None) -> float: r"""Autosize `nominal_power`. Set `nominal_power` to the minimum power needed to always meet `demand`. Parameters ---------- demand : Union[float, Iterable[float]], optional Heating emand in [kWh]. safety_factor : Union[float, Tuple[float, float]], default: 1.0 `nominal_power` is oversized by factor of `safety_factor`. Returns ------- nominal_power : float Autosized nominal power Notes ----- `nominal_power` = max(demand/`efficiency`)*safety_factor """ safety_factor = safety_factor = self._get_property_value(safety_factor, 1.0) nominal_power = np.nanmax(np.array(demand)/self.efficiency)*safety_factor return nominal_power
[docs] class PV(ElectricDevice): r"""Base photovoltaic array class. Parameters ---------- nominal_power : float, default: 0.0 PV array output power in [kW]. Must be >= 0. Other Parameters ---------------- **kwargs : Any Other keyword arguments used to initialize super class. """ def __init__(self, nominal_power: float = None, **kwargs: Any): super().__init__(nominal_power=nominal_power, **kwargs)
[docs] def get_generation(self, inverter_ac_power_per_kw: Union[float, Iterable[float]]) -> Union[float, Iterable[float]]: r"""Get solar generation output. Parameters ---------- inverter_ac_power_perk_w : Union[float, Iterable[float]] Inverter AC power output per kW of PV capacity in [W/kW]. Returns ------- generation : Union[float, Iterable[float]] Solar generation as single value or time series depending on input parameter types. Notes ----- .. math:: \textrm{generation} = \frac{\textrm{capacity} \times \textrm{inverter_ac_power_per_w}}{1000} """ return self.nominal_power*np.array(inverter_ac_power_per_kw)/1000.0
[docs] def autosize(self, demand: float, epw_filepath: Union[Path, str], use_sample_target: bool = None, zero_net_energy_proportion: Union[float, Tuple[float, float]] = None, roof_area: float = None, safety_factor: Union[float, Tuple[float, float]] = None, sizing_data: pd.DataFrame = None) -> Tuple[float, np.ndarray]: r"""Autosize `nominal_power` and `inverter_ac_power_per_kw`. Samples PV data from Tracking the Sun dataset to set PV system design parameters in System Adivosry Model's `PVWattsNone` model. The PV is sized to generate `zero_net_energy_proportion` of `annual_demand` limited by the `roof_area`. It is assumed that the building's roof is suitable for the installation tilt and azimuth in the sampled data. Parameters ---------- demand : float Building annual demand in [kWh]. epw_filepath : Union[Path, str] EnergyPlus weather file path used as input to :code:`PVWattsNone` model. use_sample_target : bool Whether to directly use the sizing in the sampled instance instead of sizing for `zero_net_energy_proportion`. Will still limit the size to the `roof_area`. zero_net_energy_proportion : Union[float, Tuple[float, float]], default: (0.7, 1.0) Proportion roof_area : float, optional Roof area where the PV is mounted in m^2. safety_factor : Union[float, Tuple[float, float]], default: 1.0 The `nominal_power` is oversized by factor of `safety_factor`. It is only applied to the `zero_net_energy_proportion` estimate. sizing_data: pd.DataFrame, optional The sizing dataframe from which PV systems are sampled from. If initialized from py:class:`citylearn.citylearn.CityLearnEnv`, the data is parsed in when autosizing a building's PV. If the dataframe is not provided it is read in using :py:meth:`citylearn.data.DataSet.get_pv_sizing_data`. Returns ------- nominal_power : float Autosized nominal power. inverter_ac_power_per_kw : np.ndarray SAM :code:`ac` output for :code:`PVWattsNone` model. Notes ----- Data source: https://github.com/intelligent-environments-lab/CityLearn/tree/master/citylearn/data/misc/lbl-tracking_the_sun_res-pv.csv. """ zero_net_energy_proportion = self._get_property_value(zero_net_energy_proportion, (0.7, 1.0)) safety_factor = self._get_property_value(safety_factor, 1.0) roof_area = np.inf if roof_area is None else roof_area use_sample_target = False if use_sample_target is None else use_sample_target sizing_data = DataSet().get_pv_sizing_data() if sizing_data is None else sizing_data random_seed = self.random_seed tries = 3 for i in range(3): self._autosize_config = sizing_data.sample(1, random_state=random_seed + i).iloc[0].to_dict() model = Pvwattsv8.default('PVWattsNone') pv_nominal_power = self.autosize_config['nameplate_capacity_module_1']/1000.0 model.SystemDesign.system_capacity = pv_nominal_power model.SystemDesign.dc_ac_ratio = self.autosize_config['inverter_loading_ratio'] model.SystemDesign.tilt = self.autosize_config['tilt_1'] model.SystemDesign.azimuth = self.autosize_config['azimuth_1'] model.SystemDesign.bifaciality = self.autosize_config['bifacial_module_1']*0.65 model.SolarResource.solar_resource_file = epw_filepath try: model.execute() break except Exception as e: LOGGER.debug(f'Failed to simulate PVWatts using config: {self._autosize_config}') if i == tries - 1: raise e else: pass inverter_ac_power_per_kw = np.array(model.Outputs.ac, dtype='float32')/pv_nominal_power if use_sample_target: target_nominal_power = self.autosize_config['PV_system_size_DC'] else: zne_nominal_power = demand/sum(inverter_ac_power_per_kw/1000.0) limited_zne_nominal_power = zne_nominal_power*zero_net_energy_proportion target_nominal_power = math.floor(limited_zne_nominal_power*safety_factor/pv_nominal_power)*pv_nominal_power module_area = self.autosize_config['module_area'] pv_area = pv_nominal_power*5.263 if module_area is None or math.isnan(module_area) else module_area roof_limit_nominal_power = math.floor(roof_area/pv_area)*pv_nominal_power nominal_power = min(max(target_nominal_power, pv_nominal_power), roof_limit_nominal_power) self._autosize_config = { **self.autosize_config, 'demand': demand, 'epw_filepath': epw_filepath, 'use_sample_target': use_sample_target, 'zero_net_energy_proportion': zero_net_energy_proportion, 'roof_area': roof_area, 'safety_factor': safety_factor, 'pv_area': pv_area, 'nameplate_capacity_module_1': model.SystemDesign.system_capacity, 'bifacial_module_1': model.SystemDesign.bifaciality, 'target_nominal_power': target_nominal_power, 'roof_limit_nominal_power': roof_limit_nominal_power, 'nominal_power': nominal_power } return nominal_power, inverter_ac_power_per_kw
[docs] class StorageDevice(Device): r"""Base storage device class. Parameters ---------- capacity : float, default: 0.0 Maximum amount of energy the storage device can store in [kWh]. Must be >= 0. efficiency : Union[float, Tuple[float, float]], default: (0.90, 0.98) Technical efficiency. loss_coefficient : Union[float, Tuple[float, float]], default: (0.001, 0.009) Standby hourly losses. Must be between 0 and 1 (this value is often 0 or really close to 0). initial_soc : Union[float, Tuple[float, float]], default: 0.0 State of charge when `time_step` = 0. Must be >= 0 and < `capacity`. Other Parameters ---------------- **kwargs : Any Other keyword arguments used to initialize super class. """ def __init__(self, capacity: float = None, efficiency: Union[float, Tuple[float, float]] = None, loss_coefficient: Union[float, Tuple[float, float]] = None, initial_soc: Union[float, Tuple[float, float]] = None, **kwargs: Any): self.random_seed = kwargs.get('random_seed', None) self.capacity = capacity self.loss_coefficient = loss_coefficient self.initial_soc = initial_soc super().__init__(efficiency = efficiency, **kwargs) @property def capacity(self) -> float: r"""Maximum amount of energy the storage device can store in [kWh].""" return self.__capacity @property def loss_coefficient(self) -> float: r"""Standby hourly losses.""" return self.__loss_coefficient @property def initial_soc(self) -> float: r"""State of charge when `time_step` = 0 in [kWh].""" return self.__initial_soc @property def soc(self) -> np.ndarray: r"""State of charge time series between [0, 1] in [:math:`\frac{\textrm{capacity}_{\textrm{charged}}}{\textrm{capacity}}`].""" return self.__soc @property def energy_init(self) -> float: r"""Latest energy level after accounting for standby hourly lossses in [kWh].""" return max(0.0, self.__soc[self.time_step - 1]*self.capacity*(1 - self.loss_coefficient)) @property def energy_balance(self) -> np.ndarray: r"""Charged/discharged energy time series in [kWh].""" return self.__energy_balance @property def round_trip_efficiency(self) -> float: """Efficiency square root.""" return self.efficiency**0.5 @capacity.setter def capacity(self, capacity: float): capacity = 0.0 if capacity is None else capacity assert capacity >= 0, 'capacity must be >= 0.' self.__capacity = capacity @Device.efficiency.setter def efficiency(self, efficiency: float): efficiency = self._get_property_value(efficiency, (0.9, 0.98)) Device.efficiency.fset(self, efficiency) @loss_coefficient.setter def loss_coefficient(self, loss_coefficient: Union[float, Tuple[float, float]]): loss_coefficient = self._get_property_value(loss_coefficient, (0.001, 0.009)) assert 0 <= loss_coefficient <= 1, 'loss_coefficient must be >= 0 and <= 1.' self.__loss_coefficient = loss_coefficient @initial_soc.setter def initial_soc(self, initial_soc: Union[float, Tuple[float, float]]): initial_soc = self._get_property_value(initial_soc, 0.0) assert 0.0 <= initial_soc <= 1.0, 'initial_soc must be >= 0.0 and <= 1.0.' self.__initial_soc = initial_soc
[docs] def get_metadata(self) -> Mapping[str, Any]: return { **super().get_metadata(), 'capacity': self.capacity, 'loss_coefficient': self.loss_coefficient, 'initial_soc': self.initial_soc, 'round_trip_efficiency': self.round_trip_efficiency }
[docs] def charge(self, energy: float): """Charges or discharges storage with respect to specified energy while considering `capacity` and `soc_init` limitations and, energy losses to the environment quantified by `round_trip_efficiency`. Parameters ---------- energy : float Energy to charge if (+) or discharge if (-) in [kWh]. Notes ----- If charging, soc = min(`soc_init` + energy*`round_trip_efficiency`, `capacity`) If discharging, soc = max(0, `soc_init` + energy/`round_trip_efficiency`) """ # The initial State Of Charge (SOC) is the previous SOC minus the energy losses energy_final = min(self.energy_init + energy*self.round_trip_efficiency, self.capacity) if energy >= 0\ else max(0.0, self.energy_init + energy/self.round_trip_efficiency) self.__soc[self.time_step] = energy_final/max(self.capacity, ZERO_DIVISION_PLACEHOLDER) self.__energy_balance[self.time_step] = self.set_energy_balance(energy_final)
[docs] def set_energy_balance(self, energy: float) -> float: r"""Calculate energy balance. Parameters ---------- energy: float Energy equivalent of state-of-charge in [kWh]. Returns ------- energy: float Charged/discharged energy since last time step in [kWh] The energy balance is a derived quantity and is the product or quotient of the difference between consecutive SOCs and `round_trip_efficiency` for discharge or charge events respectively thus, thus accounts for energy losses to environment during charging and discharge. It is the actual energy charged/discharged irrespective of what is determined in the step function after taking into account storage design limits e.g. maximum power input/output, capacity. """ energy -= self.energy_init energy_balance = energy/self.round_trip_efficiency if energy >= 0 else energy*self.round_trip_efficiency return energy_balance
[docs] def autosize(self, demand: Iterable[float], safety_factor: Union[float, Tuple[float, float]] = None) -> float: r"""Autosize `capacity`. Set `capacity` to the minimum capacity needed to always meet `demand`. Parameters ---------- demand : Union[float, Iterable[float]], optional Heating emand in [kWh]. safety_factor : Union[float, Tuple[float, float]], default: (1.0, 2.0) The `capacity` is oversized by factor of `safety_factor`. Returns ------- capacity : float Autosized cpacity. Notes ----- `capacity` = max(demand/`efficiency`)*safety_factor """ safety_factor = self._get_property_value(safety_factor, (1.0, 2.0)) capacity = np.nanmax(demand)*safety_factor return capacity
[docs] def reset(self): r"""Reset `StorageDevice` to initial state.""" super().reset() self.__soc = np.zeros(self.episode_tracker.episode_time_steps, dtype='float32') self.__soc[0] = self.initial_soc self.__energy_balance = np.zeros(self.episode_tracker.episode_time_steps, dtype='float32')
[docs] class StorageTank(StorageDevice): r"""Base thermal energy storage class. Parameters ---------- capacity : float, default: 0.0 Maximum amount of energy the storage device can store in [kWh]. Must be >= 0. max_output_power : float, optional Maximum amount of power that the storage unit can output [kW]. max_input_power : float, optional Maximum amount of power that the storage unit can use to charge [kW]. Other Parameters ---------------- **kwargs : Any Other keyword arguments used to initialize super class. """ def __init__(self, capacity: float = None, max_output_power: float = None, max_input_power: float = None, **kwargs: Any): super().__init__(capacity = capacity, **kwargs) self.max_output_power = max_output_power self.max_input_power = max_input_power @property def max_output_power(self) -> float: r"""Maximum amount of power that the storage unit can output [kW].""" return self.__max_output_power @property def max_input_power(self) -> float: r"""Maximum amount of power that the storage unit can use to charge [kW].""" return self.__max_input_power @max_output_power.setter def max_output_power(self, max_output_power: float): assert max_output_power is None or max_output_power >= 0, '`max_output_power` must be >= 0.' self.__max_output_power = max_output_power @max_input_power.setter def max_input_power(self, max_input_power: float): assert max_input_power is None or max_input_power >= 0, '`max_input_power` must be >= 0.' self.__max_input_power = max_input_power
[docs] def charge(self, energy: float): """Charges or discharges storage with respect to specified energy while considering `capacity` and `soc_init` limitations and, energy losses to the environment quantified by `efficiency`. Parameters ---------- energy : float Energy to charge if (+) or discharge if (-) in [kWh]. Notes ----- If charging, soc = min(`soc_init` + energy*`efficiency`, `max_input_power`, `capacity`) If discharging, soc = max(0, `soc_init` + energy/`efficiency`, `max_output_power`) """ if energy >= 0: energy = energy if self.max_input_power is None else np.nanmin([energy, self.max_input_power]) else: energy = energy if self.max_output_power is None else np.nanmax([-self.max_output_power, energy]) super().charge(energy)
[docs] class Battery(StorageDevice, ElectricDevice): r"""Base electricity storage class. Parameters ---------- capacity : float, default: 0.0 Maximum amount of energy the storage device can store in [kWh]. Must be >= 0. nominal_power: float Maximum amount of electric power that the battery can use to charge or discharge. capacity_loss_coefficient : Union[float, Tuple[float, float]], default: (1e-5, 1e-4) Battery degradation; storage capacity lost in each charge and discharge cycle (as a fraction of the total capacity). power_efficiency_curve: list, default: [[0, 0.83],[0.3, 0.83],[0.7, 0.9],[0.8, 0.9],[1, 0.85]] Charging/Discharging efficiency as a function of nominal power. capacity_power_curve: list, default: [[0.0, 1],[0.8, 1],[1.0, 0.2]] Maximum power of the battery as a function of its current state of charge. depth_of_discharge: Union[float, Tuple[float, float]], default: 1.0 Maximum fraction of the battery that can be discharged relative to the total battery capacity. Other Parameters ---------------- **kwargs : Any Other keyword arguments used to initialize super classes. """ def __init__(self, capacity: float = None, nominal_power: float = None, capacity_loss_coefficient: Union[float, Tuple[float, float]] = None, power_efficiency_curve: List[List[float]] = None, capacity_power_curve: List[List[float]] = None, depth_of_discharge: Union[float, Tuple[float, float]] = None, **kwargs: Any): self._efficiency_history = [] self._capacity_history = [] self.random_seed = kwargs.get('random_seed', None) self.depth_of_discharge = depth_of_discharge super().__init__(capacity=capacity, nominal_power=nominal_power, **kwargs) self._capacity_history = [self.capacity] self.capacity_loss_coefficient = capacity_loss_coefficient self.power_efficiency_curve = power_efficiency_curve self.capacity_power_curve = capacity_power_curve @StorageDevice.efficiency.getter def efficiency(self) -> float: """Current time step technical efficiency.""" return self.efficiency_history[-1] @property def degraded_capacity(self) -> float: r"""Maximum amount of energy the storage device can store after degradation in [kWh].""" return self.capacity_history[-1] @property def capacity_loss_coefficient(self) -> float: """Battery degradation; storage capacity lost in each charge and discharge cycle (as a fraction of the total capacity).""" return self.__capacity_loss_coefficient @property def power_efficiency_curve(self) -> np.ndarray: """Charging/Discharging efficiency as a function of the nomianl power.""" return self.__power_efficiency_curve @property def capacity_power_curve(self) -> np.ndarray: """Maximum power of the battery as a function of its current state of charge.""" return self.__capacity_power_curve @property def depth_of_discharge(self) -> float: """Maximum fraction of the battery that can be discharged relative to the total battery capacity.""" return self.__depth_of_discharge @property def efficiency_history(self) -> List[float]: """Time series of technical efficiency.""" return self._efficiency_history @property def capacity_history(self) -> List[float]: """Time series of maximum amount of energy the storage device can store in [kWh].""" return self._capacity_history @StorageDevice.capacity.setter def capacity(self, capacity: Union[float, Tuple[float, float]]): StorageDevice.capacity.fset(self, capacity) self._capacity_history = [super().capacity] @efficiency.setter def efficiency(self, efficiency: Union[float, Tuple[float, float]]): StorageDevice.efficiency.fset(self, efficiency) self._efficiency_history.append(super().efficiency) @capacity_loss_coefficient.setter def capacity_loss_coefficient(self, capacity_loss_coefficient: Union[float, Tuple[float, float]]): capacity_loss_coefficient = self._get_property_value(capacity_loss_coefficient, (1e-5, 1e-4)) self.__capacity_loss_coefficient = capacity_loss_coefficient @power_efficiency_curve.setter def power_efficiency_curve(self, power_efficiency_curve: List[List[float]]): if power_efficiency_curve is None: power_efficiency_curve = [ [0, self.numpy_random_state.uniform(self.efficiency*0.85, self.efficiency*0.90)], [self.numpy_random_state.uniform(0.25, 0.35), self.numpy_random_state.uniform(self.efficiency*0.90, self.efficiency*0.95)], [self.numpy_random_state.uniform(0.65, 0.75), self.numpy_random_state.uniform(self.efficiency*0.98, self.efficiency*1.0)], [self.numpy_random_state.uniform(0.75, 0.85), self.efficiency], [1, self.numpy_random_state.uniform(self.efficiency*0.95, self.efficiency*0.98)] ] else: pass self.__power_efficiency_curve = np.array(power_efficiency_curve).T @capacity_power_curve.setter def capacity_power_curve(self, capacity_power_curve: List[List[float]]): if capacity_power_curve is None: capacity_power_curve = [ [0.0, self.numpy_random_state.uniform(0.95, 1.0)], [self.numpy_random_state.uniform(0.75, 0.85), self.numpy_random_state.uniform(0.90, 0.95)], [1.0, self.numpy_random_state.uniform(0.20, 0.30)] ] else: pass self.__capacity_power_curve = np.array(capacity_power_curve).T @StorageDevice.initial_soc.setter def initial_soc(self, initial_soc: float): initial_soc = 1.0 - self.depth_of_discharge if initial_soc is None else initial_soc StorageDevice.initial_soc.fset(self, initial_soc) @depth_of_discharge.setter def depth_of_discharge(self, depth_of_discharge: float): self.__depth_of_discharge = self._get_property_value(depth_of_discharge, 1.0)
[docs] def get_metadata(self) -> Mapping[str, Any]: return { **super().get_metadata(), 'depth_of_discharge': self.depth_of_discharge, 'capacity_loss_coefficient': self.capacity_loss_coefficient, 'power_efficiency_curve': self.power_efficiency_curve, 'capacity_power_curve': self.capacity_power_curve, }
[docs] def charge(self, energy: float): """Charges or discharges storage with respect to specified energy while considering `capacity` degradation and `soc_init` limitations, losses to the environment quantified by `efficiency`, `power_efficiency_curve` and `capacity_power_curve`. Parameters ---------- energy : float Energy to charge if (+) or discharge if (-) in [kWh]. """ action_energy = energy if energy >= 0: energy_wrt_degrade = self.degraded_capacity - self.energy_init max_input_power = self.get_max_input_power() energy = min(max_input_power, self.available_nominal_power, energy_wrt_degrade, energy) self.efficiency = self.get_current_efficiency(min(action_energy, max_input_power)) else: soc_limit_wrt_dod = 1.0 - self.depth_of_discharge soc_init = self.soc[self.time_step - 1] soc_difference = soc_init - soc_limit_wrt_dod energy_limit_wrt_dod = max(soc_difference*self.capacity*self.round_trip_efficiency, 0.0)*-1 max_output_power = self.get_max_output_power() energy = max(-max_output_power, energy_limit_wrt_dod, energy) self.efficiency = self.get_current_efficiency(min(abs(action_energy), max_output_power)) super().charge(energy) degraded_capacity = max(self.degraded_capacity - self.degrade(), 0.0) self._capacity_history.append(degraded_capacity) self.update_electricity_consumption(self.energy_balance[self.time_step], enforce_polarity=False)
[docs] def get_max_output_power(self) -> float: r"""Get maximum output power while considering `capacity_power_curve` limitations if defined otherwise, returns `nominal_power`. Returns ------- max_output_power : float Maximum amount of power that the storage unit can output [kW]. """ return self.get_max_input_power()
[docs] def get_max_input_power(self) -> float: r"""Get maximum input power while considering `capacity_power_curve` limitations. Returns ------- max_input_power : float Maximum amount of power that the storage unit can use to charge [kW]. """ #The initial SOC is the previous SOC minus the energy losses soc = self.energy_init/max(self.capacity, ZERO_DIVISION_PLACEHOLDER) # Calculating the maximum power rate at which the battery can be charged or discharged idx = max(0, np.argmax(soc <= self.capacity_power_curve[0]) - 1) max_output_power = self.nominal_power*( self.capacity_power_curve[1][idx] + (self.capacity_power_curve[1][idx+1] - self.capacity_power_curve[1][idx])*(soc - self.capacity_power_curve[0][idx]) /(self.capacity_power_curve[0][idx+1] - self.capacity_power_curve[0][idx]) ) return max_output_power
[docs] def get_current_efficiency(self, energy: float) -> float: r"""Get technical efficiency while considering `power_efficiency_curve` limitations. Returns ------- efficiency : float Technical efficiency. """ # Calculating the maximum power rate at which the battery can be charged or discharged energy_normalized = np.abs(energy)/max(self.nominal_power, ZERO_DIVISION_PLACEHOLDER) idx = max(0, np.argmax(energy_normalized <= self.power_efficiency_curve[0]) - 1) efficiency = self.power_efficiency_curve[1][idx]\ + (energy_normalized - self.power_efficiency_curve[0][idx] )*(self.power_efficiency_curve[1][idx + 1] - self.power_efficiency_curve[1][idx] )/(self.power_efficiency_curve[0][idx + 1] - self.power_efficiency_curve[0][idx]) return efficiency
[docs] def set_ad_hoc_charge(self, energy: float): """Charges or discharges storage with disregard to capacity` degradation, losses to the environment quantified by `efficiency`, `power_efficiency_curve` and `capacity_power_curve`. Considers only `soc_init` limitations and maximum capacity limitations Used for setting EVs Soc after coming from a transit state Parameters ---------- energy : float Energy to charge if (+) or discharge if (-) in [kWh]. """ super().charge(energy)
[docs] def degrade(self) -> float: r"""Get amount of capacity degradation. Returns ------- capacity : float Maximum amount of energy the storage device can store in [kWh]. """ # Calculating the degradation of the battery: new max. capacity of the battery after charge/discharge capacity_degrade = self.capacity_loss_coefficient*self.capacity*np.abs(self.energy_balance[self.time_step])/(2*max(self.degraded_capacity, ZERO_DIVISION_PLACEHOLDER)) return capacity_degrade
[docs] def autosize( self, demand: float, duration: Union[float, Tuple[float, float]] = None, parallel: bool = None, safety_factor: Union[float, Tuple[float, float]] = None, sizing_data: pd.DataFrame = None ) -> Tuple[float, float, float, float, float, float]: r"""Randomly selects a battery from the internally defined real world manufacturer model and autosizes its parameters. The total capacity and nominal power are autosized to meet the hourly demand for a specified duration. It is assumed that there is no limit on the number of batteries that can be connected in series or parallel for any of the battery models. Parameters ---------- demand : float Hourly, building demand to be met for duration. duration : Union[float, Tuple[float, float]], default : (1.5, 3.5) Number of hours the sized battery should be able to meet demand. parallel : bool, default : False Whether to assume multiple batteries are connected in parallel so that the maximum nominal power is the product of the unit count and the nominal_power of one battery i.e., increasing number of battery units also increases nominal power. safety_factor : Union[float, Tuple[float, float]], default: 1.0 The `target capacity is oversized by factor of `safety_factor`. Returns ------- capacity : float Selected battery's autosized capacity to meet demand for duration. nominal_power : float Selected battery's autosized nominal power to meet demand for duration. depth_of_discharge : float Selected battery depth-of-discharge. efficiency : float Selected battery efficiency. loss_coefficient : float Selected battery loss coefficient. capacity_loss_coefficient : float Selected battery capacity loss coefficient. sizing_data: pd.DataFrame, optional The sizing dataframe from which batteries systems are sampled from. If initialized from py:class:`citylearn.citylearn.CityLearnEnv`, the data is parsed in when autosizing a building's battery. If the dataframe is not provided it is read in using :py:meth:`citylearn.data.DataSet.get_battery_sizing_data`. Notes ----- Data source: https://github.com/intelligent-environments-lab/CityLearn/tree/master/citylearn/data/misc/battery_choices.yaml. """ duration = self._get_property_value(duration, (1.5, 3.5)) safety_factor = self._get_property_value(safety_factor, 1.0) parallel = False if parallel is None else parallel sizing_data = DataSet().get_battery_sizing_data() if sizing_data is None else sizing_data choices = sizing_data[sizing_data['nominal_power']<=demand].copy() if choices.shape[0] == 0: choices = sizing_data.sort_values('nominal_power').iloc[0:1].copy() else: pass choices = choices.to_dict('index') choice = self.numpy_random_state.choice(list(choices.keys())) target_capacity = demand*duration*safety_factor unit_count = max(1, math.floor(target_capacity/choices[choice]['capacity'])) capacity = choices[choice]['capacity']*unit_count nominal_power = choices[choice]['nominal_power']*max(1.0, unit_count*int(parallel)) depth_of_discharge = choices[choice]['depth_of_discharge'] efficiency = choices[choice]['efficiency'] loss_coefficient = choices[choice]['loss_coefficient'] capacity_loss_coefficient = choices[choice]['capacity_loss_coefficient'] self._autosize_config = { 'model': choice, 'demand': demand, 'duration': duration, 'safety_factor': safety_factor, 'unit_count': unit_count, **choices[choice], } return capacity, nominal_power, depth_of_discharge, efficiency, loss_coefficient, capacity_loss_coefficient
[docs] def reset(self): r"""Reset `Battery` to initial state.""" super().reset() self._efficiency_history = self._efficiency_history[0:1] self._capacity_history = self._capacity_history[0:1]